Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; : 107196, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734217

RESUMO

With the spread of artemisinin resistance throughout South East Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterized. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47±2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modeling. Ten participants were inoculated and administered 360 mg (n=4), 540 mg (n=4), or 720 mg (n=1) pyronaridine. One participant was withdrawn without receiving pyronaridine. Time to maximum pyronaridine concentration was 1-2 hours, the elimination half-life was 8-9 days, and parasite clearance half-life was approximately 5 hours. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (MIC: 5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.

2.
ACS Infect Dis ; 10(4): 1174-1184, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472113

RESUMO

The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutação , Lactamas , Leucina , Nitrilas , Saccharomyces cerevisiae , Resistência a Medicamentos
3.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38260708

RESUMO

Most of the fundamental processes of cells are mediated by proteins. However, the biologically-relevant mechanism of most proteins are poorly understood. Dominant negative mutations have provided a valuable tool for investigating protein mechanisms but can be difficult to isolate because of their toxic effects. We used a mutational scanning approach to identify dominant negative mutations in yeast Hsp90. Hsp90 is a chaperone that forms dynamic complexes with many co-chaperones and client proteins. In vitro analyses have elucidated some key biochemical states and structures of Hsp90, co-chaperones, and clients; however, the biological mechanism of Hsp90 remains unclear. For example, high throughput studies have found that many E3 ubiquitin ligases bind to Hsp90, but it is unclear if these are primarily clients or acting to tag other clients for degradation. We introduced a library of all point mutations in the ATPase domain of Hsp90 into yeast and noticed that 176 were more than 10-fold depleted at the earliest point that we could analyze. There were two hot spot regions of the depleted mutations that were located at the hinges of a loop that closes over ATP. We quantified the dominant negative growth effects of mutations in the hinge regions using a library of mutations driven by an inducible promoter. We analyzed individual dominant negative mutations in detail and found that addition of the E33A mutation that prevents ATP hydrolysis by Hsp90 abrogated the dominant negative phenotype. Pull-down experiments did not reveal any stable binding partners, indicating that the dominant effects were mediated by dynamic complexes. DN Hsp90 decreased the expression level of two model Hsp90 clients, glucocorticoid receptor (GR) and v-src kinase. Using MG132, we found that GR was rapidly destabilized in a proteasome-dependent fashion. These findings provide evidence that the binding of E3 ligases to Hsp90 may serve a quality control function fundamental to eukaryotes.

4.
Trials ; 24(1): 635, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794489

RESUMO

BACKGROUND: Repeated COVID-19 waves and corresponding mitigation measures have impacted health systems globally with exceptional challenges. In response to the pandemic, researchers, regulators, and funders rapidly pivoted to COVID-19 research activities. However, many clinical drug studies were not completed, due to often complex and rapidly evolving research conditions. METHODS: We outline our experience of planning and managing a randomised, adaptive, open-label, phase 2 clinical trial to evaluate the safety and efficacy of four repurposed drug regimens versus standard-of-care (SOC) in outpatients with 'mild to moderate' COVID-19 in Johannesburg, South Africa, in the context of a partnership with multiple stakeholders. The study was conducted between 3 September 2020 and 23 August 2021 during changing COVID-19 restrictions, significant morbidity and mortality waves, and allied supply line, economic, and political instability. RESULTS: Our clinical study design was pragmatic, including low-risk patients who were treated open label. There was built-in flexibility, including provision for some sample size adjustment and a range of secondary efficacy outcomes. Barriers to recruitment included the timing of waves, staff shortages due to illness, late presentation of patients, COVID-19 misinformation, and political unrest. Mitigations were the use of community health workers, deployment of mobile clinical units, and simplification of screening. Trial management required a radical reorganisation of logistics and processes to accommodate COVID-19 restrictions. These included the delivery of staff training and monitoring remotely, electronic consent, patient training and support to collect samples and report data at home, and the introduction of tele-medicine. These measures were successful for data collection, safe, and well received by patients. CONCLUSION: Completing a COVID-19 trial in outpatients during the height of the pandemic required multiple innovations in nearly every aspect of clinical trial management, a high commitment level from study staff and patients, and support from study sponsors. Our experience has generated a more robust clinical research infrastructure, building in efficiencies to clinical trial management beyond the pandemic.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pacientes Ambulatoriais , África do Sul/epidemiologia , Projetos de Pesquisa , Resultado do Tratamento
5.
ACS Infect Dis ; 9(7): 1372-1386, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37390404

RESUMO

Drugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Leucina , Lactamas , Nitrilas
6.
Cell Syst ; 14(3): 237-246.e7, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801015

RESUMO

Allosteric regulation is central to protein function in cellular networks. A fundamental open question is whether cellular regulation of allosteric proteins occurs only at a few defined positions or at many sites distributed throughout the structure. Here, we probe the regulation of GTPases-protein switches that control signaling through regulated conformational cycling-at residue-level resolution by deep mutagenesis in the native biological network. For the GTPase Gsp1/Ran, we find that 28% of the 4,315 assayed mutations show pronounced gain-of-function responses. Twenty of the sixty positions enriched for gain-of-function mutations are outside the canonical GTPase active site switch regions. Kinetic analysis shows that these distal sites are allosterically coupled to the active site. We conclude that the GTPase switch mechanism is broadly sensitive to cellular allosteric regulation. Our systematic discovery of new regulatory sites provides a functional map to interrogate and target GTPases controlling many essential biological processes.


Assuntos
GTP Fosfo-Hidrolases , Proteínas , Sítio Alostérico , GTP Fosfo-Hidrolases/genética , Cinética , Regulação Alostérica/genética
7.
Curr Opin Struct Biol ; 78: 102525, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621152

RESUMO

Robust technology has been developed to systematically quantify fitness landscapes that provide valuable opportunities to improve our understanding of drug resistance and define new avenues to develop drugs with reduced resistance susceptibility. We outline the critical importance of drug resistance studies and the potential for fitness landscape approaches to contribute to this effort. We describe the major technical advancements in mutational scanning, which is the primary approach used to quantify protein fitness landscapes. There are many complex steps to consider in planning and executing mutational scanning projects including developing a selection scheme, generating mutant libraries, tracking the frequency of variants using next-generation sequencing, and processing and interpreting the data. Key experimental parameters impacting each of these steps are discussed to aid in planning fitness landscape studies. There is a strong need for improved understanding of drug resistance, and fitness landscapes provide a promising new approach.


Assuntos
Aptidão Genética , Modelos Genéticos , Mutação , Proteínas , Resistência a Medicamentos
8.
Am J Trop Med Hyg ; 107(4): 804-814, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36037868

RESUMO

Plasmodium falciparum sporozoite (PfSPZ) direct venous inoculation (DVI) using cryopreserved, infectious PfSPZ (PfSPZ Challenge [Sanaria, Rockville, Maryland]) is an established controlled human malaria infection model. However, to evaluate new chemical entities with potential blood-stage activity, more detailed data are needed on safety, tolerability, and parasite clearance kinetics for DVI of PfSPZ Challenge with established schizonticidal antimalarial drugs. This open-label, phase Ib study enrolled 16 malaria-naïve healthy adults in two cohorts (eight per cohort). Following DVI of 3,200 PfSPZ (NF54 strain), parasitemia was assessed by quantitative polymerase chain reaction (qPCR) from day 7. The approved antimalarial artemether-lumefantrine was administered at a qPCR-defined target parasitemia of ≥ 5,000 parasites/mL of blood. The intervention was generally well tolerated, with two grade 3 adverse events of neutropenia, and no serious adverse events. All 16 participants developed parasitemia after a mean of 9.7 days (95% CI 9.1-10.4) and a mean parasitemia level of 511 parasites/mL (95% CI 369-709). The median time to reach ≥ 5,000 parasites/mL was 11.5 days (95% CI 10.4-12.4; Kaplan-Meier), at that point the geometric mean (GM) parasitemia was 15,530 parasites/mL (95% CI 10,268-23,488). Artemether-lumefantrine was initiated at a GM of 12.1 days (95% CI 11.5-12.7), and a GM parasitemia of 6,101 parasites/mL (1,587-23,450). Mean parasite clearance time was 1.3 days (95% CI 0.9-2.1) and the mean log10 parasite reduction ratio over 48 hours was 3.6 (95% CI 3.4-3.7). This study supports the safety, tolerability, and feasibility of PfSPZ Challenge by DVI for evaluating the blood-stage activity of candidate antimalarial drugs.


Assuntos
Antimaláricos , Malária , Parasitos , Adulto , Animais , Antimaláricos/efeitos adversos , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/efeitos adversos , Humanos , Malária/tratamento farmacológico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum , Esporozoítos
9.
Elife ; 112022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35723575

RESUMO

With the continual evolution of new strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that are more virulent, transmissible, and able to evade current vaccines, there is an urgent need for effective anti-viral drugs. The SARS-CoV-2 main protease (Mpro) is a leading target for drug design due to its conserved and indispensable role in the viral life cycle. Drugs targeting Mpro appear promising but will elicit selection pressure for resistance. To understand resistance potential in Mpro, we performed a comprehensive mutational scan of the protease that analyzed the function of all possible single amino acid changes. We developed three separate high throughput assays of Mpro function in yeast, based on either the ability of Mpro variants to cleave at a defined cut-site or on the toxicity of their expression to yeast. We used deep sequencing to quantify the functional effects of each variant in each screen. The protein fitness landscapes from all three screens were strongly correlated, indicating that they captured the biophysical properties critical to Mpro function. The fitness landscapes revealed a non-active site location on the surface that is extremely sensitive to mutation, making it a favorable location to target with inhibitors. In addition, we found a network of critical amino acids that physically bridge the two active sites of the Mpro dimer. The clinical variants of Mpro were predominantly functional in our screens, indicating that Mpro is under strong selection pressure in the human population. Our results provide predictions of mutations that will be readily accessible to Mpro evolution and that are likely to contribute to drug resistance. This complete mutational guide of Mpro can be used in the design of inhibitors with reduced potential of evolving viral resistance.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Cisteína Endopeptidases/metabolismo , Humanos , Inibidores de Proteases , SARS-CoV-2/genética , Saccharomyces cerevisiae/metabolismo , Proteínas não Estruturais Virais/metabolismo
10.
Nat Commun ; 13(1): 3556, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729165

RESUMO

Coronaviruses can evolve and spread rapidly to cause severe disease morbidity and mortality, as exemplified by SARS-CoV-2 variants of the COVID-19 pandemic. Although currently available vaccines remain mostly effective against SARS-CoV-2 variants, additional treatment strategies are needed. Inhibitors that target essential viral enzymes, such as proteases and polymerases, represent key classes of antivirals. However, clinical use of antiviral therapies inevitably leads to emergence of drug resistance. In this study we implemented a strategy to pre-emptively address drug resistance to protease inhibitors targeting the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation. We solved nine high-resolution cocrystal structures of SARS-CoV-2 Mpro bound to substrate peptides and six structures with cleavage products. These structures enabled us to define the substrate envelope of Mpro, map the critical recognition elements, and identify evolutionarily vulnerable sites that may be susceptible to resistance mutations that would compromise binding of the newly developed Mpro inhibitors. Our results suggest strategies for developing robust inhibitors against SARS-CoV-2 that will retain longer-lasting efficacy against this evolving viral pathogen.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Resistência a Medicamentos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Peptídeo Hidrolases , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química
11.
Virus Evol ; 7(2): veab103, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35299788

RESUMO

Investigating the relationships between protein function and fitness provides keys for understanding biochemical mechanisms that underly evolution. Mutations with partial fitness defects can delineate the threshold of biochemical function required for viability. We utilized a previous deep mutational scan of HIV-1 protease (PR) to identify variants with 15-45 per cent defects in replication and analysed the biochemical function of eight variants (L10M, L10S, V32C, V32I, A71V, A71S, Q92I, Q92N). We purified each variant and assessed the efficiency of peptide cleavage for three cut sites (MA-CA, TF-PR, and PR-RT) as well as gel-based analyses of processing of purified Gag. The cutting activity of at least one site was perturbed relative to WT protease for all variants, consistent with cutting activity being a primary determinant of fitness effects. We examined the correlation of fitness defects with cutting activity of different sites. MA-CA showed the weakest correlation (R 2 = 0.02) with fitness, suggesting relatively weak coupling with viral replication. In contrast, cutting of the TF-PR site showed the strongest correlation with fitness (R 2 = 0.53). Cutting at the TF-PR site creates a new PR protein with a free N-terminus that is critical for activity. Our findings indicate that increasing the pool of active PR is rate limiting for viral replication, making this an ideal step to target with inhibitors.

12.
Mol Biol Evol ; 38(2): 368-379, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32871012

RESUMO

The distribution of fitness effects (DFEs) of new mutations across different environments quantifies the potential for adaptation in a given environment and its cost in others. So far, results regarding the cost of adaptation across environments have been mixed, and most studies have sampled random mutations across different genes. Here, we quantify systematically how costs of adaptation vary along a large stretch of protein sequence by studying the distribution of fitness effects of the same ≈2,300 amino-acid changing mutations obtained from deep mutational scanning of 119 amino acids in the middle domain of the heat shock protein Hsp90 in five environments. This region is known to be important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-terminal-Middle and Middle-C-terminal interdomains, and regulation of ATPase-chaperone activity. Interestingly, we find that fitness correlates well across diverse stressful environments, with the exception of one environment, diamide. Consistent with this result, we find little cost of adaptation; on average only one in seven beneficial mutations is deleterious in another environment. We identify a hotspot of beneficial mutations in a region of the protein that is located within an allosteric center. The identified protein regions that are enriched in beneficial, deleterious, and costly mutations coincide with residues that are involved in the stabilization of Hsp90 interdomains and stabilization of client-binding interfaces, or residues that are involved in ATPase-chaperone activity of Hsp90. Thus, our study yields information regarding the role and adaptive potential of a protein sequence that complements and extends known structural information.


Assuntos
Adaptação Biológica , Interação Gene-Ambiente , Aptidão Genética , Proteínas de Choque Térmico HSP90/genética , Mutação , Saccharomyces cerevisiae
13.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32129763

RESUMO

Gene-environment interactions have long been theorized to influence molecular evolution. However, the environmental dependence of most mutations remains unknown. Using deep mutational scanning, we engineered yeast with all 44,604 single codon changes encoding 14,160 amino acid variants in Hsp90 and quantified growth effects under standard conditions and under five stress conditions. To our knowledge, these are the largest determined comprehensive fitness maps of point mutants. The growth of many variants differed between conditions, indicating that environment can have a large impact on Hsp90 evolution. Multiple variants provided growth advantages under individual conditions; however, these variants tended to exhibit growth defects in other environments. The diversity of Hsp90 sequences observed in extant eukaryotes preferentially contains variants that supported robust growth under all tested conditions. Rather than favoring substitutions in individual conditions, the long-term selective pressure on Hsp90 may have been that of fluctuating environments, leading to robustness under a variety of conditions.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Interação Gene-Ambiente , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adaptação Fisiológica , Epistasia Genética , Aptidão Genética , Proteínas de Choque Térmico HSP90/genética , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
14.
Proc Natl Acad Sci U S A ; 115(17): 4453-4458, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29626131

RESUMO

Interactions among mutations within a protein have the potential to make molecular evolution contingent and irreversible, but the extent to which epistasis actually shaped historical evolutionary trajectories is unclear. To address this question, we experimentally measured how the fitness effects of historical sequence substitutions changed during the billion-year evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep eukaryotic ancestor to modern Saccharomyces cerevisiae We found a pervasive influence of epistasis. Of 98 derived amino acid states that evolved along this lineage, about half compromise fitness when introduced into the reconstructed ancestral Hsp90. And the vast majority of ancestral states reduce fitness when introduced into the extant S. cerevisiae Hsp90. Overall, more than 75% of historical substitutions were contingent on permissive substitutions that rendered the derived state nondeleterious, became entrenched by subsequent restrictive substitutions that made the ancestral state deleterious, or both. This epistasis was primarily caused by specific interactions among sites rather than a general effect on the protein's tolerance to mutation. Our results show that epistasis continually opened and closed windows of mutational opportunity over evolutionary timescales, producing histories and biological states that reflect the transient internal constraints imposed by the protein's fleeting sequence states.


Assuntos
Epistasia Genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Domínios Proteicos
15.
Curr Opin Struct Biol ; 48: 141-148, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29351890

RESUMO

Biology has, and continues to be, shaped by evolutionary mechanisms. Within the past decade, local fitness landscapes have become experimentally tractable and are providing new perspectives on evolutionary mechanisms. Powered by next-generation sequencing, the impacts of all individual amino acid substitutions on function have been quantified for dozens of proteins. These fitness maps have been utilized to investigate the biophysical underpinnings of existing protein function as well as the appearance and enhancement of new protein functions. This review highlights emerging trends from this rapidly growing area of research, including an expanded understanding of the biophysical mechanisms underlying existing and new protein function, the roles epistasis and adaptation play in shaping evolution, and the prediction of disease-causing alleles in humans.


Assuntos
Adaptação Fisiológica/genética , Epistasia Genética , Evolução Molecular , Aptidão Genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Substituição de Aminoácidos , Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica
16.
Cell Rep ; 15(3): 588-598, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27068472

RESUMO

To probe the mechanism of the Hsp90 chaperone that is required for the maturation of many signaling proteins in eukaryotes, we analyzed the effects of all individual amino acid changes in the ATPase domain on yeast growth rate. The sensitivity of a position to mutation was strongly influenced by proximity to the phosphates of ATP, indicating that ATPase-driven conformational changes impose stringent physical constraints on Hsp90. To investigate how these constraints may vary for different clients, we performed biochemical analyses on a panel of Hsp90 mutants spanning the full range of observed fitness effects. We observed distinct effects of nine Hsp90 mutations on activation of v-src and glucocorticoid receptor (GR), indicating that different chaperone mechanisms can be utilized for these clients. These results provide a detailed guide for understanding Hsp90 mechanism and highlight the potential for inhibitors of Hsp90 that target a subset of clients.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Adenina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoácidos/genética , Sequência Conservada , Evolução Molecular , Aptidão Genética , Proteínas de Choque Térmico HSP90/química , Modelos Moleculares , Saccharomyces cerevisiae/química
17.
J Mol Biol ; 427(18): 2904-11, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25843003

RESUMO

Hsp90 is a molecular chaperone that facilitates the maturation of signaling proteins including many kinases and steroid hormone receptors. Through these client proteins, Hsp90 is a key mediator of many physiological processes and has emerged as a promising drug target in cancer. Additionally, Hsp90 can mask or potentiate the impact of mutations in clients with remarkable influence on evolutionary adaptations. The influential roles of Hsp90 in biology and disease have stimulated extensive research into the molecular mechanism of this chaperone. These studies have shown that Hsp90 is a homodimeric protein that requires ATP hydrolysis and a host of accessory proteins termed co-chaperones to facilitate the maturation of clients to their active states. Flexible hinge regions between its three structured domains enable Hsp90 to sample dramatically distinct conformations that are influenced by nucleotide, client, and co-chaperone binding. While it is clear that Hsp90 can exist in symmetrical conformations, recent studies have indicated that this homodimeric chaperone can also assume a variety of asymmetric conformations and complexes that are important for client maturation. The visualization of Hsp90-client complexes at high resolution together with tools to independently manipulate each subunit in the Hsp90 dimer are providing new insights into the asymmetric function of each subunit during client maturation.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Conformação Proteica , Transdução de Sinais/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/química , Humanos , Hidrólise , Chaperonas Moleculares/química , Mutação , Nucleotídeos/química , Ligação Proteica , Multimerização Proteica
18.
Genetics ; 198(2): 461-71, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25316787

RESUMO

High-throughput sequencing has enabled many powerful approaches in biological research. Here, we review sequencing approaches to measure frequency changes within engineered mutational libraries subject to selection. These analyses can provide direct estimates of biochemical and fitness effects for all individual mutations across entire genes (and likely compact genomes in the near future) in genetically tractable systems such as microbes, viruses, and mammalian cells. The effects of mutations on experimental fitness can be assessed using sequencing to monitor time-dependent changes in mutant frequency during bulk competitions. The impact of mutations on biochemical functions can be determined using reporters or other means of separating variants based on individual activities (e.g., binding affinity for a partner molecule can be interrogated using surface display of libraries of mutant proteins and isolation of bound and unbound populations). The comprehensive investigation of mutant effects on both biochemical function and experimental fitness provide promising new avenues to investigate the connections between biochemistry, cell physiology, and evolution. We summarize recent findings from systematic mutational analyses; describe how they relate to a field rich in both theory and experimentation; and highlight how they may contribute to ongoing and future research into protein structure-function relationships, systems-level descriptions of cell physiology, and population-genetic inferences on the relative contributions of selection and drift.


Assuntos
Proteínas/genética , Animais , Deriva Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Genéticos , Mutação , Conformação Proteica , Estabilidade Proteica , Proteínas/química , Seleção Genética , Análise de Sequência de DNA
19.
Genes Dev ; 21(1): 124-36, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17210793

RESUMO

Proteolytic cascades often transduce signals between cellular compartments, but the features of these cascades that permit efficient conversion of a biological signal into a transcriptional output are not well elucidated. sigma(E) mediates an envelope stress response in Escherichia coli, and its activity is controlled by regulated degradation of RseA, a membrane-spanning anti-sigma factor. Examination of the individual steps in this protease cascade reveals that the initial, signal-sensing cleavage step is rate-limiting; that multiple ATP-dependent proteases degrade the cytoplasmic fragment of RseA and that dissociation of sigma(E) from RseA is so slow that most free sigma(E) must be generated by the active degradation of RseA. As a consequence, the degradation rate of RseA is set by the amount of inducing signal, and insulated from the "load" on and activity of the cytoplasmic proteases. Additionally, changes in RseA degradation rate are rapidly reflected in altered sigma(E) activity. These design features are attractive as general components of signal transduction pathways governed by unstable negative regulators.


Assuntos
Adaptação Fisiológica , Endopeptidases/metabolismo , Escherichia coli/fisiologia , Fator sigma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Endopeptidases/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fator sigma/genética , Fatores de Transcrição/genética , beta-Galactosidase/metabolismo
20.
Nat Struct Mol Biol ; 12(6): 520-5, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15880122

RESUMO

Energy-dependent proteases often rely on adaptor proteins to modulate substrate recognition. The SspB adaptor binds peptide sequences in the stress-response regulator RseA and in ssrA-tagged proteins and delivers these molecules to the AAA+ ClpXP protease for degradation. The structure of SspB bound to an ssrA peptide is known. Here, we report the crystal structure of a complex between SspB and its recognition peptide in RseA. Notably, the RseA sequence is positioned in the peptide-binding groove of SspB in a direction opposite to the ssrA peptide, the two peptides share only one common interaction with the adaptor, and the RseA interaction site is substantially larger than the overlapping ssrA site. This marked diversity in SspB recognition of different target proteins indicates that it is capable of highly flexible and dynamic substrate delivery.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...